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1. Introduction

The discovery of integrability in the context of the AdS/CFT correspondence [1] which

appeared both on the gauge theory side [2 – 6] and on the string theory side [7] gives a

hope for finding, in principle, the exact spectrum of the quantized superstring in AdS5×S5

and equivalently the spectrum of anomalous dimensions of all operators in N = 4 Super

Yang-Mills theory.

A lot of progress has been done in the setting of infinitely long strings (strings with

large charges/angular momenta) or very long gauge theory operators. The S-matrix for

elementary excitations has been identified, initially in various subsectors [8, 9] and then

for the full multiplet of elementary excitations [10]. The remaining overall scalar function

— the so-called dressing factor [11, 12] — has been finally fixed in [13, 14] satisfying

constraints of crossing symmetry [15].

Despite the immense progress a lot remains to be understood concerning the structure

of energy levels of strings with finite charges or short operators. On the gauge theory

side the problem was identified with wrapping interactions [16]. On the string side of the

duality, these correspond to virtual corrections coming from particles propagating around

the string worldsheet cylinder [17]. These corrections lead to effects which go beyond the

asymptotic Bethe ansatz. Such phenomena have been observed in various calculations [18 –

22] and models [23, 24]. Currently intensive work is being done both at weak [25 – 27] and

at strong coupling [28]. At strong coupling the finite size effects come (roughly) in two

varieties

δε ∝ e
−

2πJ√
λ sin

p
2 (1.1)

as for the classical finite size correction to the giant magnon [20], and

δε ∝ e
−

2πJ√
λ (1.2)
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which typically arises from a summation over quadratic fluctuations around a classical

string solution.

In [29], generalizations of Lüscher formulas [30] were derived for finding the leading

finite-size correction to the dispersion relation of elementary excitations. There are two

types of contributions: the µ-term and the F -term. The first corresponds to a particle

splitting into two on-shell particles which cross the cylinder and recombine. It is intimately

related to the existence of bound states. At strong coupling it gives the correction

δεµ = −
√

λ

π
· 4

e2
· sin3 p

2
· e−

2πJ√
λ sin

p
2 (1.3)

which exactly reproduces the classical computation of the leading finite-size giant magnon

dispersion relation of [20]. Other checks have been done dealing with dyonic magnons [31].

The motivation for this work was to explore the role of the F -term for the giant

magnon. One expects that summing the energies of small fluctuations around the giant

magnon solution should give a correction of the type (1.2) which should be reproduced by

the F -term formula1

δεF
a = −

∫

∞

−∞

dq

2π

(

1 − ε′(p)

ε′(q∗)

)

· e−iq∗L ·
∑

b

(−1)Fb

(

Sba
ba(q∗, p) − 1

)

(1.4)

Here q is the original Euclidean energy which plays the role of momentum in the space-

time interchanged theory, E = ε(p) is the dispersion relation and q∗ is determined by the

Euclidean on-shell condition

q2 + ε2(q∗) = 0 (1.5)

It will be convenient to change integration variables and rewrite (1.4) as

δεF
a =

∫

∞

−∞

dq∗
2πi

(

ε′(q∗) − ε′(p)
)

· e−iq∗L ·
∑

b

(−1)Fb

(

Sba
ba(q∗, p) − 1

)

(1.6)

where we used the relation

q = ±iε(q∗) (1.7)

and we choose the plus sign.

In the course of performing the calculations we found a very close link of the generalized

formula (1.4) or (1.6) with the summation over energies of small fluctuations. Indeed

we found that the whole expression (1.6) can be exactly reproduced from a summation

over quadratic fluctuations provided one uses exact scattering phase-shifts (and not just

semiclassical ones). The result is very general and does not depend on the form of the

dispersion relation but is true only in the case of diagonal scattering.

The plan of this paper is as follows. In section 2 we will present the setup of the

quadratic fluctuation calculation. In section 3 we will perform a Poisson resummation over

1The (−1)Fb missing in the original derivation of [29] has been independently observed in [36]. Dia-

grammatically the (−1)Fb arises from a −1 factor due to a fermion loop in the 1PI self-energy. It can be

compensated by another −1 if the fermions are antiperiodic on the cylinder (in the TBA interpretation this

corresponds to a computation of the thermal partition function) but this does not happen here and the

TBA interpretation is rather the computation of an index.
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the energies and recover (1.6). In section 4 we will apply the above formalism to find the

leading quantum correction to the giant magnon. We will close the paper with a discussion.

2. Quadratic fluctuations

The giant magnon solution of [32], when presented in an appropriate gauge looks like a

localized soliton. The spatial extent of the solution is J (or J +aE depending on the choice

of light-cone gauge) and the original solution of [32] was defined on the infinite line i.e.

with J = ∞. Once we consider finite but large J , the solution will be deformed and the

resulting correction to the energy was found in [20]. If we want to compute the sum of

energies of quadratic fluctuations, in principle we should consider fluctuations around the

finite J solution.

Let us note, however, that according to Lüscher formulas the leading finite size correc-

tions appear with definite exponential terms which differ between the µ-term, associated

more with deformations of a classical solution and the F -term which appears to have an

exponential term characteristic of quadratic fluctuations around the spinning string. As in

this paper we want to concentrate on the term with the latter characteristics, we will ne-

glect the impact of the deformation of the solution at finite J on the energies of fluctuation

modes. Such an effect would have generically an exponential factor of the µ-term type.

We will hence consider fluctuations around the infinite J magnon and put them on a

cylinder with periodic boundary conditions of circumference J . For general theories there

is also a clear distinction between µ and F -term exponential scalings so we will proceed

with this assumption.

The setup is in fact very similar to the one considered in the paper [33] where effects of

fluctuations around the J = ∞ magnon were analyzed. However putting the fluctuations

on a cylinder in [33] was only a regularization procedure prior to the limit J → ∞. Here we

would like to argue that it can also be used to obtain leading finite-size effects of quantum

fluctuations.

Since the soliton is localized, very far from the soliton core the fluctuation will be just

like a fluctuation around the vacuum, hence in this case another soliton. Now we have to

impose the periodicity condition for the wave function of the ‘fluctuation soliton’. As it

will pass around the cylinder it will get an additional phase shift from scattering with the

‘giant magnon’ which can be directly expressed in terms of the forward S-matrix:

Sba
ba(k, p) = eiδba(k,p) (2.1)

where the original soliton (‘giant magnon’) is of type ‘a’, while the fluctuation is an ex-

citation of type ‘b’. We assume that eiδba(k,p) is a pure phase, which is true for diagonal

scattering and for small fluctuations around the giant magnon (see Eqns 115-117 in [33]).

The quantization condition then reads

kn =
2πn

L
+

δb(kn)

L
(2.2)

where we denote the circumference by L and we suppress the explicit p and a dependence of

δba(k, p). The scattering phase is taken at L = ∞ because the corrections to δba vanishing
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at infinity will be subleading to our result. A summation over the zero-point energies would

then be

δεnaive =
1

2

∑

b

∞
∑

n=−∞

(−1)Fb

(

ε(kn) − ε(k(0)
n )

)

(2.3)

where we subtracted off fluctuations around the vacuum with the standard momenta

k0
n =

2πn

L
(2.4)

We will argue that to have agreement with the F -term computation we still have to slightly

modify (2.3).

In the present context, the giant magnon is not stationary but is moving with velocity

v =
dε(p)

dp
(2.5)

The whole system is periodic if one considers together time translations t → t+τ and space

translation x → x + L, where the period is τ = L/v. The analogs of the standard phase

factor ωτ ≡ ε(k)τ are now the stability angles [34]

ν(k) = τε(k) + kL ≡ τε(k) + δ(k) = τ
(

ε(k) +
v

L
δ(k)

)

(2.6)

where we used the fact that e2πin = 1. This suggests that the correct quantity to sum is

δεfinal =
1

2

∑

b

∞
∑

n=−∞

(−1)Fb

(

ε(kn) +
v

L
δ(kn)

)

− (vacuum) (2.7)

We will proceed with this assumption and show that the generalized F -term formula (1.4)

is exactly the leading exponential behaviour of the above sum. In the derivation we will

just make a mild assumption that ε(k) is a symmetric function of k.

3. Summation over fluctuations

The main technical obstacle in calculating the sum (2.7) is that in almost all cases we are

unable to solve analytically the quantization conditions for the momenta (2.2). However

this problem may be bypassed by writing an iterative but exact solution. Let us denote

the combination 2πn/L by t. Then it is clear that an exact solution of (2.2) is

k(t) = t +
δ(t + δ(t+...)

L
)

L
(3.1)

Now we can perform a Poisson resummation of the sum over n:

∞
∑

n=−∞

F

(

2πn

L

)

=
L

2π

∞
∑

m=−∞

∫ +∞

−∞

F (t)e−imLtdt (3.2)

– 4 –



J
H
E
P
0
6
(
2
0
0
8
)
0
3
6

Lüscher formulas from fluctuations

In this subsection we will concentrate on the terms which give the leading exponential large

L corrections, namely terms with m = ±1. As a result we will get the Lüscher’s F-term.

It turns out that it is possible to include also subleading terms in a closed form (see the

next subsection).

Let us first consider the summation over energies in (2.7). To save space we will reinstate

the summation over types of fluctuations and (−1)Fb at the end of the calculation. We

thus have

δε1 =
L

4π

∫ +∞

−∞

eiLt(ǫ(k(t)) − ǫ(t))dt +
L

4π

∫ +∞

−∞

e−iLt(ǫ(k(t)) − ǫ(t))dt (3.3)

Now after an integration by parts, we obtain

− 1

4πi

∫ +∞

−∞

eiLtǫ′(k(t))
dk

dt
dt +

1

4πi

∫ +∞

−∞

e−iLtǫ′(k(t))
dk

dt
dt − 1

2πi

∫ +∞

−∞

e−iLtǫ′(t)dt (3.4)

The next and key step is to change the integration variables in the first two integrals from

t to k and use the functional equation k(t) = t + δ(k(t))/L. The result is

− 1

4πi

∫ +∞

−∞

eiL(k−
δ(k)

L
)ǫ′(k)dk +

1

4πi

∫ +∞

−∞

e−iL(k−
δ(k)

L
)ǫ′(k)dk − 1

2πi

∫ +∞

−∞

eiLtǫ′(t)dt (3.5)

Since ǫ′(t) is antisymmetric this can be rewritten as

δε1 =
1

4πi

∫ +∞

−∞

e−iLk(eiδ(k) + e−iδ(−k) − 2)ǫ′(k)dk (3.6)

Using the relation between the forward S matrix and the phase shifts we obtain something

very similar to the F -term:

δε1 =
1

4πi

∫ +∞

−∞

e−iLk(Sba
ba(k, p) + (S−1)baba(−k, p) − 2)ǫ′(k)dk (3.7)

where we use the relation

(S−1)ab
ab(k, p) =

1

Sab
ab(k, p)

(3.8)

which is valid for diagonal matrices. We will now show that the second term in the above

equation, when summed over all flavours with (−1)Fb is in fact equal to the first one.

∑

b

(−1)Fb · (S−1)baba(−k, p) =
∑

b

(−1)FbSba
ba(k, p) (3.9)

This equality comes from using crossing symmetry of the S-matrix

(C−1 ⊗ 1)Sst1(p1, p2)(C ⊗ 1)S(−p1, p2) = 1 (3.10)

where C is charge conjugation matrix and st1 denotes the supertranspose in the first entry

of S:

(Sst1)b1b2
a1a2

= (−1)Fa1Fb1
+Fa1Sa1b2

b1a2
(3.11)
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Using crossing symmetry (3.10) we can rewrite
∑

b

(−1)Fb · (S−1)baba(−k, p) = sTr1(C
−1Sst1(k, p)C)aa (3.12)

where sTr1 denotes the supertrace with respect to the first entry of S. Using the properties

of supertrace we can change the order of the matrices to obtain

sTr1(C
−1Sst1(k, p)C)aa = sTr1(CC−1Sst1(k, p))aa =

∑

b

(−1)FbSba
ba(k, p) (3.13)

where in the last equality we used the fact that (−1)FbFb+Fb = 1. Taking into account the

above we obtain finally for δε1:

δε1 =
1

2πi

∫ +∞

−∞

ǫ′(k)e−iLk
∑

b

(−1)Fb(Sba
ba(k, p) − 1)dk (3.14)

In order to transform the above integral into a F -term like integral one has to shift the

contour of integration in the same way as in the derivation of the F -term so as to make

the momentum to be purely imaginary. The question of boundary terms is nontrivial and

has to be considered on a case by case basis. However it certainly works for relativistic

theories and, more importantly in the present context, it also works for a fermion system

with the giant magnon dispersion relation (see [17]). Incidentally the integrality of L was

necessary there. It would be interesting to study this point further.

Note that at this stage we are missing the second piece of (1.6). We will show now

that it comes from performing Poisson resummation of the second term in (2.7).

To this end we have to evaluate

δε2 =
ǫ′(p)

4π

∫ +∞

−∞

eiLtδ(k(t))dt +
ǫ′(p)

4π

∫ +∞

−∞

e−iLtδ(k(t))dt (3.15)

Using the quantization condition (2.2) it is convenient to express δ(k(t)) as

δ(k(t)) = k(t) − t (3.16)

Plugging it into the above integral and performing similar manipulations as for δε1, we

arrive at

δε2 =
ǫ′(p)

4πi

∫ +∞

−∞

e−iLk(eiδ(k) + e−iδ(−k) − 2)dk (3.17)

Combining this contribution with (3.6), expressing the phase shifts through the S-matrix,

rotating contours, using the equality (3.9) we arrive at the complete expression for the

F -term:

δε1 + δε2 =

∫

∞

−∞

dq∗
2πi

(

ε′(q∗) − ε′(p)
)

· e−iq∗L ·
∑

b

(−1)Fb

(

Sba
ba(q∗, p) − 1

)

(3.18)

The above derivation shows that Lüscher’s F -term is equivalent to a summation over

fluctuations. In order to recover the full expression we have to consider energies derived

from stability angles. A special case of the above formula for a relativistic dispersion

relation leads to the formula of [35] for corrections to a moving particle, while further

specializing to a particle at rest reduces to the classical Lüscher formula [30]. In the

following section we will apply this formalism to calculate the leading correction to the

giant magnon dispersion relation coming from quadratic fluctuations.
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Refinements. It is straightforward to compute contribution to the energy shift from the

terms with arbitrary value of m > 0.2 As a result we get

δε(m) =
1

4πim

∫ +∞

−∞

e−imLk
(

ǫ′(k) − ǫ′(p)
)

(eimδ(k) + e−imδ(−k) − 2)dk (3.19)

where m has the interpretation of the winding number associated with the virtual soliton

going around the cylinder and interacting m-times with the giant magnon (which is still a

1-loop result). The Lüscher’s F -term is reproduced by m = 1 (this corresponds to a single

interaction with a virtual particle).

In order to obtain the Poisson-resummed 1-loop energy shift we have to sum over all

values of m. After the identification (2.1) and using crossing symmetry the final formula

reads

+∞
∑

m=1

δε(m) = −
∫

∞

−∞

dq∗
2πi

(

ε′(q∗) − ε′(p)
)

∑

b

(−1)Fb log
(1 − Sba

ba(q∗, p)e−iq∗L

1 − e−iq∗L

)

(3.20)

We have to keep in mind that terms with higher m will appear at the same order as

contributions from higher loop processes which are not taken into account by the sum over

fluctuation energies.

Let us now return to the formulas (3.14) and (3.17). These provide integral formulas

equivalent to Lüscher formulas but defined as integrals over physical real momenta. Al-

though our derivation and interpretation in terms of fluctuations fails for general S-matrices

with nondiagonal scattering we found that one can give a similar integral formula which is

valid also in these other cases (a typical example would be e.g. the O(3) model)

δε =
1

2πi

∫

dk(ε′(k) − ε′(p))e−ikL
∑

b

(−1)Fb

(

Sba
ba(k, p) − 1

)

(3.21)

4. The giant magnon

Let us now proceed to compute the leading finite size correction to the giant magnon

dispersion relation coming from quantum fluctuations. We will perform a saddle point

calculation of the F -term integral. The exponent in the F -term formula is

e
−2J arcsinh

“

1
4g

√
1+q2

”

(4.1)

where we use the conventions of [14] i.e. g =
√

λ/(4π). Saddle point expansion gives

e−
J
2g

−
J
4g

q2

(4.2)

The saddle point has Euclidean energy q = 0. Gaussian integration gives

2

√

πg

J
e
−

J
2g = e

−
2πJ√

λ · λ
1
4√
J

(4.3)

2The case m = 0 is trivial. There is no contribution to the energy shift under the assumption that
P

b
(−1)Fbδba(k) = 0 for any a and k (this is true for the giant magnon phase shifts).

– 7 –



J
H
E
P
0
6
(
2
0
0
8
)
0
3
6

The rest of the integrand has to be evaluated at the saddle point q = 0. The Jacobian

factor is then trivial
(

1 − ε′(p)

ε′(q∗)

)

→ 1 (4.4)

The phase shifts have to be evaluated for the virtual particle at the saddle point:

x+
q = i

(

1 +
1

4g

)

x−

q = i

(

1 − 1

4g

)

(4.5)

and for the giant magnon described by the strong coupling expressions:

x+
p = e

ip
2

(

1 +
1

4g sin p
2

)

x−

p = e
−ip
2

(

1 +
1

4g sin p
2

)

(4.6)

Now we may evaluate the phase shifts using (2.1). The contribution of the dressing phase

at the saddle point reduces, in the strong coupling limit, to the contribution of the AFS

phase [11] which gives
1 + sin p

2

1 − sin p
2

e−ipe−2 sin p
2 (4.7)

The phase shifts of the S5 scalars, AdS5 scalars and fermions (see Eqns 36-41 in [33]) then

evaluate to

(

eiδ
)

S5
=

1 + sin p
2

1 − sin p
2

· e−2 sin p
2 (4.8)

(

eiδ
)

AdS5

= 1 · e−2 sin p
2 (4.9)

(

eiδ
)

fermions
=

cos p
4 + sin p

4

cos p
4 − sin p

4

· e−2 sin p
2 (4.10)

Summing the phase shifts
(

4
(

eiδ
)

S5 + 4
(

eiδ
)

AdS5
− 8

(

eiδ
)

fermions

)

gives the final expres-

sion

δεF = − 1

2π
· λ

1
4√
J
· 16 sin2 p

4

1 − sin p
2

e−2 sin p
2 e

−
2πJ√

λ (4.11)

The above procedure is of course equivalent to performing a saddle point directly in the

Poisson resummed expression for a sum over fluctuation energies. To this order of ap-

proximation it is enough to consider relativistic dispersion relation for the fluctuations as

in [33], ε(k) =
√

1 + k2. Performing a change of variables to k = 2r
1−r2 one can evaluate

the saddle point to r = i. The derivation in section 3 however, identifies directly the sum

over fluctuations which corresponds to the F -term formula in its full generality without

the need for a saddle point approximation.

5. Discussion

In this paper we have shown that the generalized Lüscher F -term formula (1.4) has a very

transparent interpretation as the leading exponential term in a summation over frequencies

derived from stability angles. For a particle at rest, corresponding to the standard Lüscher

– 8 –
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calculation, the summation is just over zero-point energies. For a moving particle, the

modifications due to the stability angles are necessary. Hence under very mild assumptions

such calculations of 1-loop effects have to agree.

We have used the above formalism to evaluate the leading finite size correction to

the giant magnon dispersion relation coming from quantum fluctuations. By the above

reasoning the F-term computation and the summation over modes are by definition really

identical computations.

It would be interesting to understand more deeply the appearance of these effective

energies derived from stability angles in this context especially as the relation to WKB

methods is not entirely clear here. We leave this problem for future research.
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